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1 What CNVtools is meant to do

1.1 Input data

CNVtools is a R package meant to perform robust case-control and quantitative trait association testing of copy
number variants (CNVs). The association testing procedure for CNVtools requires a one-dimensional normalized
data summary per sample. Another vector is required to provide the case-control status or, alternatively, a quan-
titative trait. Another optional input vector is used to separate the samples in batches in situations where one
expects the signal distribution to differentially affect each batch because of potential technical artifacts. This issue
of differential bias is discussed in details in the companion publication published in Nature Genetics in 2008 (see
Reference at the end of this vignette).

In addition, CNVtools fits a mixture model to the one-dimensional CNV data summary. For this approach
to make sense, it is essential that the distinct components can at least be distinguished in the histogram of the
normalized signal. If this is not the case mixture models are not an modeling appropriate tool and CNVtools cannot
be used to analyze such data.

Note that no code is provided in this package for CNV signal normalization. However, is it frequent for multiple
CNYV probes located in the same chromosome region to provide information about the same CNV. It is therefore
useful to combine the information across a small number of CNV probes to obtain a one-dimensional signal for
each sample. In fact, this summary step is required to use the CNVtools routines which need a one-dimensional
data summary as input. This data summary step is the purpose of the functions apply.pca and apply.ldf which
suggest two methods to summarize CNV data across multiple probes: principal component and canonical correlation
analysis. Unlike the actual association testing routines (like CNVtest.binary) and the underlying C code, these
two functions are not essential to CNVtools but we thought it would be convenient to include them.



1.2 Genome-wide or single CNV data

Unlike a R package like “snpMatrix” specifically designed for genome-wide data, the CNVtools functions are im-
plemented to analyze each CNV separately. To be more explicit, we did not design data structure to store and
analyze data from multiple CNVs (for example genome-wide). However, this package was initially designed to
analyze CNV data generated by the Wellcome Trust Case Control Consortium, which performed a genome-wide
scan for association for eight common disorders (approximately 19,000 samples). Therefore CNVtools is well suited
for large scale CNV association studies but it is the users task to write a wrapper in order to apply the CNVtools
code separately for each CNV. To give some explicit computation time: for the WTCCC CNV association study,
and using recently purchased computers (as of 2009, a mixture of Dual-Core AMD Opteron Processor 2220 and
Quad-Core AMD Opteron Processor 2384), CNVtools could analyze approximately 3,000 CNVs typed in 19,000
individuals for an approximate total time of 20 days of computing (6h using a 80 nodes computing cluster).

2 First look at the data

We first load an example CNV data set, called A112; in the two WTCCC control groups (1958 British Birth cohort
and National Blood Services). The data required for CNVtools is a matrix of normalized signal intensities. In this
example each row represents an individual and each column represents a locus within the CNV. To get a feel for
the data, we plot the histograms for the mean intensity as well as the first principal component analysis (Figure 1).

> #source("../CNVtools.r"); dyn.load("../../src/CNVtools.so"); load("../../CNVtools/data/A112.RData")
> library(CNVtools)
> data(A112)
> head(A112)

subject cohort SNPO SNP1 SNP2 SNP3
1 WTCCCO01-11474A1 58C -0.12647400 -0.1214220 -0.1423570 0.0449446
2 WTCCCO1-11474A2 58C -0.21574200 0.0265778 -0.0964269 0.0617480
3 WTCCCO1-11474A3 58C -0.00150499 0.0820076 -0.2853430 0.1589580
4 WTCCCO01-11474A4 58C -0.05538290 -0.1691450 -0.0592800 0.0264289
5 WTCCC01-11474A5 58C -0.12926900 0.2014540 -0.8474870 -0.2647420
6 WTCCC01-11474A6 58C -0.06209860 0.1826130 0.1245160 -0.1731720

SNP4 SNP5 SNP6 SNP7 SNP8 SNP9
0.0259435 0.1351870 0.0746991 0.40581000 -0.18601600 0.0990579
0.1521360 -0.0445652 -0.3751110 -0.39122600 0.10114500 0.1816270
0.0320422 0.1823220 0.0699921 0.29014900 0.00885492 -0.0387201
.0208353 -0.2740840 0.0310302 0.20566300 0.12842100 -0.2219500
-0.0502723 -0.2150250 -0.2254730 0.00162372 0.08069250 0.0562238
-0.0870918 -0.0902743 -0.0634414 -0.80391700 0.37845800 -0.1880560

SNP10 SNP11 SNP12 SNP13 SNP14 SNP15 SNP16
-0.1969750 0.0448241 -0.0193997 0.13117800 -0.163383 0.1545760 0.0253607
0.0688791 -0.1166620 0.0217019 -0.05719720 -0.138044 -0.0554405 -0.0536655
0.1131100 0.0609800 0.2402140 0.23635400 -0.111235 0.5082330 0.0272966
.2299260 0.0198905 -0.3210060 0.14955900 -0.534339 -0.7596830 -0.1940050
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as.matrix(A112[, -c(1,2)])
dimnames (raw.signal) [[1]] <- Al112$subject
mean.signal <- apply(raw.signal, MAR=1, FUN=mean)
pca.signal <- apply.pca(raw.signal)
pdf ("fig/mean_pca_signal.pdf", width=10, height=5)
par (mfrow=c(1,2))
hist(mean.signal, breaks=50, main='Mean signal', cex.lab=1.3)

hist(pca.signal, breaks=50, main='First PCA signal', cex.lab=1.3)
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Figure 1: Histograms for the mean intensity and the first principal component of the CNV A112

3 Model selection using the Bayesian Information Criterion (BIC)

To determine the number of components of the CNV for the downstream analysis we can run the model selection
algorithm. The models scanned by this function can be specified by the user, however the default settings allow for
determining the number of components using some general models for the mean and variance of the components.
We specify 3 iterations under HO to increase the chances of locating a global maximum for each model. The output
of the model selection gives the BIC (and AIC) for the different models. The model that minimizes the chosen
statistic is the most likely model. This is demonstrated in Figure 2.
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batches <- factor(A112$cohort)
sample <- factor(A112$subject)
set.seed(0)

results <- CNVtest.select.model (signal=pca.signal, batch = batches, sample
ncomp <- results$selected

= sample, n.HO = 3, method="B.



> pdf ("fig/modelselect.pdf",width=5,height=5)
> plot(-results$BIC, xlab="n comp", ylab="-BIC", type="b", 1ty=2, col="red", pch = '+')
> dev.off ()
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Figure 2: The BIC as a function of the number of components fit to the data output from the model selection stage.
The most appropriate model is the one that minimises the BIC.

4 Clustering the PCA transformed data

We can then cluster the result of the pca analysis under the null hypothesis of no association between the number of
copies and the case-control status. The data will be clustered only once, assuming the null hypothesis Hy. Because
of this we do not have to specify any case-control status. We assume free model for the means and the variances
for each number of copies using '~ strata(cn)’. We could have chosen free variances for each combination of batch
and copy number using '~ strata(cn, batch)’. Alternatively a variance model proportional to the number of copies
is possible using '~ cn’. Note, however, that the formulation using strata is much quicker and numerically robust,
and should be used when possible. We can also provide an optional vector of starting values for the mean locations
of the three clusters.

Note that we must check the status of the fit. Only 'C’ should be accepted for further analysis. The possibilities
include

'C’ Converged. This is the only acceptable status.
"M’ Maximum iterations reached. The EM algorithm did not converge.

'P’ Posterior density problem. The posterior probabilities are not monotonic.



'F’ Fit failed. Most likely due to singularity at o = 0.

The output contains a list, and the first element of this list is the data frame of interest.
result of the clustering.

In Figure 3 we plot the

> ncomp <- 3

> batches <- factor(A112$cohort)

> sample <- factor(A112$subject)

> fit.pca <- CNVtest.binary ( signal = pca.signal, sample =
> print(fit.pca$status.HO)

(1]

> pdf ("fig/pca-fit.pdf", width=10, height=5)
> par(mfrow=c(1,2))

> cnv.plot(fit.pca$posterior.HO, batch
> cnv.plot(fit.pca$posterior.HO, batch
> dev.off()
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Figure 3: Output of the clustering procedure using the pca (under the null hypothesis Hy of no allele frequency
difference between both cohorts). The colored lines show the posterior probability for each of the three copy number
classes (copy number = 1,2 or 3). For clarity the scale for the posterior probabilities is not shown but the maximum
is 1 and the three posterior probabilities always add up to 1.

5 Assigning individuals to a copy number genotype

The output from the clustering under Hy can be used to obtain the posterior probabilities and MAP estimates of
an individuals cluster membership. This can also be applied after the LDF improvement (see below). The columns
P1, P2, P3 represent the posterior probability of belonging to component 1, 2, 3. The column labeled cn is the
MAP assignment.

> head(fit.pca$posterior.HO)

subject batch signal trait P1 P2 P3 cn
1 WTCCCO01-11474A1 58C 0.1918171 0 0.04565297 0.95428972 0.0000000 2
2 WTCCCO01-11474A2 58C 0.1187269 0 0.06635041 0.93362452 0.0000000 2
3 WTCCCO01-11474A3  58C -0.6572859 0 0.92980569 0.07019431 0.0000000 1
4 WTCCCO1-11474A4  58C 1.4943201 0 0.00000000 0.00240271 0.9975957 3
5 WICCCO01-11474A5 58C 2.1352589 0 0.00000000 0.00000000 0.9999996 3
6 WICCCO01-11474A6  58C -0.5394552 0 0.84146496 0.15853503 0.0000000 1



6 Improving using the LDF procedure

It is now possible to use the posterior probabilities from the pca procedure to improve the fit. This is done by using
a linear discriminant analysis.

> ncomp <- 3

> pca.posterior <- as.matrix((fit.pca$posterior.HO)[, paste('P',seq(1l:ncomp),sep="'"')])
> dimnames (pca.posterior) [[1]] <- (fit.pca$posterior.H0)$subject

> 1df.signal <- apply.ldf(raw.signal, pca.posterior)

> pdf ("fig/1df_pca_signal.pdf", width=10, height=5)

> par (mfrow=c(1,2))

> hist(pca.signal, breaks=50, main='First PCA signal', cex.lab=1.3)

> hist(1df.signal, breaks=50, main='LDF signal', cex.lab=1.3)

> dev.off()
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Figure 4: Comparing the LDF and PCA analysis, both clustered under the null hypothesis of no association.

The results of the LDF analysis can now be see in Figure 4 and we can observe a clear improvement. The data
will then be much easier to cluster.

7 Testing for genetic association with a dichotomous disease trait

7.1 Some mathematical details

The association testing approach has been described previously (see reference below) but for completeness we
sketch the principle. We use a likelihood ratio approach to test for association between the genotype calls and the
case-control status. Genotypes are called using a finite mixture model. Formally, this association test can be as
summarized as jointly fitting two linear models:

X = v+0'Z+e (1)

logit(Y) = a+pX (2)

The first model is the Gaussian or T mixture model, and the second model is a traditional generalized logit
linear model. Notations are:

e X is a N-dimensional vector of signal intensities, where N is the number of samples in the study.

e 7 is the (IV,G) matrix of genotype assignment, where G designates the number of copy number classes:
Z;; = 1 if and only if the sample ¢ has genotype j. Each row z; of Z is sampled from a multinomial
distribution with probabilities (@i)l»G:l representing the genotype frequencies in the sampled population.



The error term e is normally distributed with mean 0.

0 is a G dimensional vector, linking the genotype status with the mean value of the signal intensity.

« and B are scalar and 3 # 0 under the alternative H;. Our default assumption is that the log-odds ratio is
proportional to the genotype X.

Y is the N dimensional binary vector describing the case-control status.

7.2 Example

Now that we have summarised the intensity data in an efficient manner we can use it to test for genetic association
between both cohorts. Here we have defined an artificial trait, 0 for NBS and 1 for 58C. We can specify the number
of iterations under Hy and H, and in that case we will use one iteration for each scenario because the data quality
is sufficient and does not require multiple iterations to be fitted properly.

> ncomp <- 3

> trait <- ifelse( A112$cohort == '58C', 0, 1)

> fit.1ldf <- CNVtest.binary ( signal = 1df.signal, sample = sample, batch = batches, disease.status = trai
> print(fit.ldf$status.HO)

[1] IIC"
> print(fit.ldf$status.H1)
[1] IlCll

> pdf ("fig/ldf-fit.pdf", width=10, height=5)
> par(mfrow=c(1,2))

> cnv.plot(fit.ldf$posterior.HO, batch
>

>

'58C', main = 'Cohort 58C', breaks
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50, col = 'red')
'Cohort NBS', breaks = 50, col

cnv.plot(fit.ldf$posterior.HO, batch
dev.off ()
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> LR.statistic <- -2%(fit.ldf$model.HO0$InL - fit.ldf$model.H1$1nL)
> print (LR.statistic)

[1] 1.546307

If the fit is correct and there is indeed no association, this statistic should be distributed as x? with one degree
of freedom. The fit can be checked in Figure 5.

Note that the assumed disease model, under the alternate hypothesis Hj, is a linear odds model, which means
that the effect on the log-odds is proportional to the number of alleles. We might be interested in testing an allelic
model, where the odds are not constrained by a linear trend. This is done by specifying the model.disease formula
when fitting the data, as follows:

> fit.1ldf <- CNVtest.binary ( signal = 1df.signal, sample = sample, batch = batches, disease.status = trai
> print(fit.ldf$status.HO)

[1] llcll
> print(fit.ldf$status.H1)
[1] "C"

> LR.statistic <- -2%(fit.ldf$model.H0$InL - fit.ldf$model.H1$1nL)
> print (LR.statistic)

[1] 3.112371

The default for model.disease is ~ cn. Introducing the factor adds one degree of freedom, canceling the
default linear constraint. The resulting statistic is now distributed, under the null, as x? with 2 degrees of freedom.
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Figure 5: Output of the clustering procedure using the LDF, under the null hypothesis Hy of no association. The
colored lines show the posterior probability for each of the three copy number classes. For clarity the scale for the
posterior probabilities is not shown but the maximum is 1 and the three posterior probabilities always add up to 1.

8 Testing for genetic association with a quantitative trait

Now consider the testing of association with a quantitative trait. The model now consists of a standard regression
instead of a logistic regression. For this example we will generate a gaussian hypothetical trait and test for association
with the combined NBS and 58C individuals. The association test is done in a completely analogous way, namely
the LR under Hy should be distributed as x? with one degree of freedom assuming a linear trend model.

> batches <- rep("ALL",length(sample))

> qt <- rnorm(length(sample), mean=9.0, sd=1.0)

> fit.1df <- CNVtest.qt(signal = 1df.signal, sample = sample, batch = batches, qt = qt, ncomp = ncomp, n.Hl
> print(fit.ldf$status.HO)

[1] IICII
> print(fit.ldf$status.H1)
[1] IlCll

> LR.statistic <- -2%(fit.ldf$model.HO0$InL - fit.ldf$model.H1$1nL)
> print (LR.statistic)

[1] 0.7683424

> pdf ("fig/qt-fit.pdf", width=15, height=5)
> qt.plot(fit.1ldf)
> dev.off ()

null device
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9 Reference

The statistical ideas underlying this package have been published in:

A robust statistical method for case-control association testing with copy number variation, Chris Barnes, Vincent
Plagnol, Tomas Fitzgerald, Richard Redon, Jonathan Marchini, David G. Clayton, Matthew E. Hurles, Nature
Genetics 2008
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Figure 6: Output of the quantitative trait association procedure on the LDF transformed data. For the rightmost
graph the colored lines show the posterior probability for each of the three copy number classes.



