
Gates/filters in Flow Cytometry Data Visualization

April 21, 2009

Abstract

The flowViz package provides tools for visualization of flow cytometry data. This document describes the
support for visualizing gates (a.k.a. filters).

1 Introduction

Tools to read in and otherwise manipulate flow cytometry data are implemented in the flowCore package. The
flowViz package provides visualization support for such data. In this document we give examples dealing with
gated or filtered data. Please consult the online documentation for more details on the high-level visualization
functions used here.

1.1 Filters and filter results

The flowCore package defines the concepts of filters and filterResults. Filters are abstract entities defined in terms
of markers that are measured on the flow instrument as different channels, whereas a filter result is the result of
applying a filter to one or more flowFrames (data objects representing individual FCM experiments). Some filters
are data driven, while some are not. We will later see how this distinction has an impact on their plotting. All
abstractions of filters or gates inherit from class filter , whereas objects generated as the result of applying a filter
inherit from class filterResult .

1.2 Visualization

Before we discuss how to visualize gates in flowViz, we need to point out that this may only be reasonable for
certain types of the many possible plots, namely one-dimensional density plots and two-dimensional scatter plots.
Over time we might add gate-plotting support for other plot types as well. There are two principal ways to add
gates to a flow cytometry plot; either we render the outlines of the gate region (for both one and two-dimensional
plots), or we highlight the points within a gate region by distinctive color, glyphs, or point size (this applies
for two-dimensional plots only). It only makes sense to visualize the boundaries of a filter if it has a (one or
two dimensional) geometric representation. This is true for rectangle, ellipsoid and polygon gates, which are all
frequently used. It is also true for some data driven gates, e.g. norm2Filter gates, which have a (data dependent)
spherical representation. Also, it makes sense to draw gate boundaries only when plotting (some of) the channels
that define the gate.

Visualizing filterResults is more general. Specifically, the result of applying a filter is usually a logical (TRUE
or FALSE) vector for each cell, or more generally, a factor (as long as we restrict ourselves to non-fuzzy filters).
This can be used as a grouping variable within a display, also when plotting channels other than those defining
the gate.

All data-driven filters depend on the filterResult to be computed in order to plot them. The user doesn’t have
to worry about this fact, as the software will implicitly compute these objects if necessary. However, realizing

1

filters and creating filterResult is often computationally intense and time-consuming, and in many cases makes
sense to explicitly create the filterResult once and pass it on to the plotting functions instead of the input filter.
In the course of this manual, filter objects and filterResults may be used interchangeably, unless stated otherwise.

1.3 Example Data

We use the GvHD data set to provide some examples. It come as a serialized flowSet with the flowViz package
and the interested user is referred to its documentation for details. For the purpose of this demonstration it is
sufficient to know that the phenoData slot of the GvHD set contains several factor variables, Patient and Visit
two of the most descriptive ones. In general, all flowSets contain an implicit name variable which is is used as the
default conditioning variable in all of flowViz’s high-level plotting functions.

> library(flowViz)

> data(GvHD)

> head(pData(GvHD))

Patient Visit Days Grade name
s5a01 5 1 -6 3 s5a01
s5a02 5 2 0 3 s5a02
s5a03 5 3 6 3 s5a03
s5a04 5 4 12 3 s5a04
s5a05 5 5 19 3 s5a05
s5a06 5 6 26 3 s5a06

The set is quite large and reducing it to a reasonable subset will speed up things for our interactive demonstration
purpose. Due to various constrains (data size, complexity of computations, limitations in the grid software under-
lying the lattice and flowViz packages), rendering plots is usually not instantaneous. It usually takes a little bit of
time to output complex panel layouts. When producing postscript output, the user should be aware that file size
may become an issue, and we will address solutions for this problem at the end of this document.

The lattice package offers inline subsetting capabilities for all high level plotting functions though the subset
argument, and this functionality (like most of the other typical lattice concepts) is also available for all derived
plotting methods in flowCore. The general idea here is that all symbols defined in either the formula or one of the
special arguments like subset are evaluated in the context of the flowFrame’s phenoData data frame or the raw
data matrix. This is a slight extension of the fundamental lattice idea necessitated by the fact that raw data and
annotation data are stored separately in a flowSet.

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD,

+ subset=Patient=="6")

Inline subsetting is useful to change plots on the fly, or to play around with various panel arrangements. However,
we still pass the whole GvHD object down to the plotting function, potentially increasing memory usage and
decreasing performance due to unnecessary heavy copying operations. Since we only want to use the subset for
patient 6 in the following examples, it makes sense to directly subset the flowSet .

> GvHD <- GvHD[pData(GvHD)$Patient==6]

We also want to transform some of the fluorescence channels to an adequate log-like scale. A good choice is the
asinh function which can deal with negative values.

> tf <- transformList(from=colnames(GvHD)[3:7], tfun=asinh)

> GvHD <- tf %on% GvHD

For details on this step, please see the documentation of the transformList and %on% functions in the flowCore
package.

2

2 Filters in scatter plots

Trellis scatter plots are created using xyplot methods. The xyplot method for flowSet objects supports filters
through the filter argument. As mentioned before, its value can either be an object inheriting from class filter
or a filterResult (a filterResultList of multiple filterResults for flowSets).

The key concepts here are that

• filters and filterResults can be used interchangeably. Providing filterResults directly may increase per-
formance for data-driven filters.

• visualization of filters depends on the type of rendering. For example, with smooth=TRUE, filters are visu-
alized geometrically, which makes sense only under certain circumstances (e.g. display axes matching filter
parameters, the filter class has a geometric represention). For scatter plots of individual dots for all events
(smooth=FALSE), filters are visualized through grouping and/or geometric filter outlines; the former makes
sense more generally, as display variables need not match filter parameters. Grouping has the drawback of
overplotting. The effect of overplotting can be reduced somewhat using transparency, but scalability issues
remain. We may try dealing with this at some point if it becomes enough of a hassle.

• the software will check for matching parameters and available visualization representations as much as
possible, yet finally it is up to the user to construct reasonable calls to the plotting functions.

2.1 Simple Geometric Filter Types

Visualization of most of the typical FCM filter types is straight forward and doesn’t require the computation of
filterResult . All parameters (e.g. min and max values in a recangular gate) are unambigously defined in the filter
object. We will start with a simple rectangleGate in the FSC-H and SSC-H dimensions.

> rgate <- rectangleGate("FSC-H"=c(0, 400),"SSC-H"=c(-50, 300))

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate)

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

3

As default for smoothed scatter plots, the gate boundaries are drawn. Orientation of the gate will be handled
by the plotting function and the user doesn’t have to worry about the order of arguments when defining the filter .
The software also decides on a reasonable two-dimensional geometric representation of more complex filters. E.g.,
we can add a third dimension to the rectangleGate and still achive the same visualization in the FSC-H and SSC-H
dimensions.

> rgate2 <- rgate * rectangleGate("FL1-H"=c(2, 4))

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate)

Most of the customization options defined in the lattice package will also work here. A more detailed discussion
about the filter-specific graphical settings will follow in one of the later sections.

For the non-smoothed rendering (i.e., all events are plotted as individual points), the default filter visualization
uses different colors for the different subpopulations.

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate, smooth=FALSE)

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

Additionally, We can add the filter boundaries to the plot using the outline argument.

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate,

+ smooth=FALSE, outline=TRUE)

4

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

The constraint for a valid two-dimensional representation doesn’t apply any more for this type of rendering.
Since each event is represented by a single point on the plot, we can visualize arbitrarily complex filters using
different colors or point glyphs for the different sub-populations. However this implies that we need to evaluate
each filter, i.e., we need to figure out which of the events are in and which are outside of the filter. We will see
in a minute how we can optimize these operations. Going back to our three-dimensional rectangle, we notice that
not all points within the rectangle are also color red, because the additional third dimension further reduced the
selection of positive events in the FSC-H and SSC-H dimensions.

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate2,

+ smooth=FALSE, outline=TRUE)

5

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

Overplotting is a potential problem for this representation. As a matter of fact, it is problematic for all
visualization approaches of high-volume FCM data that try to display individual events rather than some form
of summary statistic like density estimates. Partial transparency can alliviate some of these shortcomings but
this approach does not scale well and has certain technical limitations on graphic devices that don’t support
transparency. We will see in one of the following sections how to enable partial transparency in scatter plots.

2.2 Data-Driven Filters

Data-driven filters don’t have a natural geometric representation a priori; they are data-driven. Once all parameters
are estimated, we can usually derive such a representation from the filterResult . There is only a small subet of
filter classes for which this is not directly possible (kmeansFilter , timeFilter), although one might be able to fall
back to approximations like convex hulls or similar. So far, flowViz has nor support for plotting gate outlines
of these filter types, and they are silently ignored when passed on as argument filter to any of the high-level
plotting functions. As shown in the previous example, the absence of a two-dimensional spherical representation
only poses a problem when trying to plot filter boundaries, the non-smooth representation of individual events is
available for virtually all filter types.

In the following example, we first compute the filterResults of a norm2Filter in FSC-H and SSC-H for each
frame in our GvHD flowSet and plot their geometric elliptic representation.

> n2Filter <- norm2Filter("SSC-H", "FSC-H", scale=2, filterId="Lymphocytes")

> n2Filter.results <- filter(GvHD, n2Filter)

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=n2Filter.results)

6

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

There are data-driven filter types that may result in more than just one sub-population. curv1Filters and
curv2Filters are a prominent example. In the next code chunk we use a curv2Filter to identify high-density areas
in the FSC-H and FL4-H projections of the data.

> c2f <- curv2Filter("FSC-H", "FL4-H", bwFac=1.8)

> c2f.results <- filter(GvHD, c2f)

> xyplot(`FL4-H` ~ `FSC-H` | Visit, data=GvHD, filter=c2f.results)

7

FSC−H

F
L4

−
H 0

2

4

6

8

10

1

0 200 400 600 800 1000

2 3

0 200 400 600 800 1000

4

0 200 400 600 800 1000

5 6

0 200 400 600 800 1000

0

2

4

6

8

10

7

This is a good example for a case where passing the filterResult instead of the filter helps to optimize computa-
tion time. Depending on the hardware it can take quite a while to complete the extensive computations necessary
for the identification of siginficant high-density areas in two dimensions. Imagine you want to make slight changes
to your plot (and producing good graphical output is almost always an iterative approach); having to recompute
the filterResult on each iteration would be very time-cosuming and annoying at best.

3 Filters in one-dimensional density plots

The lattice package provides the high-level densityplot function to draw one-dimensional Kernel density estimates
of univariate data. Density estimates are a generalization of the well-known histograms; instead of drawing boxes of
relative or absolute frequencies of binned observations, a continous relative density is displayed, usually beautified
by applying a smoother function with an appropriate bandwidth. The densityplot methods in the flowViz package
assume an implicit conditioning variable (the measurement channel or channels) and display the density estimates
of all frames for one channel as a stacked layout. This has proven to be a useful visualization, since the direct
comparison of univariate channel distributions is of great interest in many FCM application, however the typically
large number of samples makes superimposing in a single display impratical. See the documention of densityplot
for more details.

In one-dimensional density plots it only makes sense to plot filter boundaries. The densities are basically a
summary of the distribution of events for a particular channel, and there is no real notion of individual events any
more. Similar to the xyplot methods, we can pass filters or filterResults to the function as optional argument
filter. We decided to indicate gate boundaries by different shading of the the respective integrals of the density
regions rather than simply adding vertical lines. These tend to be distracting in the stacked layout or are often
partly masked by overplotting of neighbouring density areas.

> densityplot(~ `FSC-H`, GvHD, filter=curv1Filter("FSC-H"))

8

s6a01

s6a02

s6a03

s6a04

s6a05

s6a06

s6a07

0 200 400 600 800 1000

FSC−H

The situation gets slightly more complex when we are conditioning on multiple FCM channels. In this case,
filter has to be a list of equal length as the number of channels that are supposed to be displayed (i.e., the number
of panels). Each list item may contain one of the familiar objects of class filter , filterResult , filterResultList , or
NULL in case no filter should be plotted at all for a given panel.

> densityplot(~ ., GvHD, channels=c("FSC-H", "SSC-H", "FL1-H"),

+ filter=list(curv1Filter("FSC-H"), NULL, rgate2))

9

s6a01

s6a02

s6a03

s6a04

s6a05

s6a06

s6a07

0 200 400 600 800 1000

FSC−H

0 200 400 600 800 1000

SSC−H

0 2 4 6 8 10

FL1−H

Note that by default the scale of the x axis has been adjusted for each panel. This is contrary to the default
settings in the lattice package and can be reversed using appropriate settings in in the scales argument.

4 Plotting parameters

Lattice graphics are a great tool to easily create informative and consise data visualization with a minimal amount
of code. Most of its default graphical parameters are well thought through. However, there is also a wealth of
customization available, and we refer readers to the package’s documentation as well as Sarkar (2008) for details.
With respect to flowViz, it should suffice to mention that customization follows the exact same principles defined
in the lattice package. As a matter of fact, most customization actually happens at the level of the underlying
lattice software. The facts to mention are:

• There are session-wide global defaults that can be queried and set using the flowViz.par.get and flowViz.par.set
functions. These are extensions to the trellis.par.get and trellis.par.set functions in the lattice pack-
age, and work in exactly the same way. All graphical parameters that are not defined in flowViz are directly
passed on to lattice.

• Parameters can also be set for a single function call using the par.settings argument. These setting take
precedence over global settings.

• Parameters are split up into logical categories and have to be provided as named lists or lists of lists. The
categories directly relevant for filter plotting are gate, gate.density, and gate.text, the basic flowViz
settings are controlled by the flow.symbol category. See the documentation for flowViz.par.set for a
complete list of available parameters. All additional graphical parameters (like cex, pch and col) known
from the lattice high-level plotting functions are also still available.

10

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate,

+ par.settings=list(gate=list(fill="black", alpha=0.2)))

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

We could have achieved the same customization by changing the session defaults:

> flowViz.par.set(gate=list(fill="black", alpha=0.2))

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate)

Depending on the rendering, the graphical parameters may have slightly different effects. The col parameters for
instance sets the line color for filter boundaries and the point color for non-smooth scatter plots (and also the
outline if outline=TRUE). In the following code sample we try to make use of partial transparency to address the
problem of overplotting. Dense regions of the plot with many overplotted points will apprear darker. Although
this is better than using opaque colors, lots of the underlying structure could still be hidden and we strongly
emphasize the advantages of smoothed scatter plots for vizualization of FCM data.

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=rgate,

+ smooth=FALSE, par.settings=list(gate=list(col="orange", alpha=0.04,

+ pch=20, cex=0.7),

+ flow.symbol=list(alpha=0.04, pch=20,

+ cex=0.7)))

11

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

For multiple population filters, R ordinary recycling rules apply, and we can spice up out plot of the curv2Filter
results by using a different color for each sub-population.

> xyplot(`FL4-H` ~ `FSC-H` | Visit, data=GvHD, filter=c2f.results,

+ par.settings=list(gate=list(fill=rainbow(10), alpha=0.5, col="transparent")))

FSC−H

F
L4

−
H 0

2

4

6

8

10

1

0 200 400 600 800 1000

2 3

0 200 400 600 800 1000

4

0 200 400 600 800 1000

5 6

0 200 400 600 800 1000

0

2

4

6

8

10

7

12

Sometimes it helps to add population names to a plot. flowCore provides default names for each filter and their
associated results, but the user is free to pass their own custom names. The interface is very simple: argument
names either takes a logical scalar (default names are used if TRUE) or a character vector. Again, recycing rules
apply when there are multiple sub-populations (unless default names are uses in which case the software provides
a reasonable choice).

> xyplot(`SSC-H` ~ `FSC-H` | Visit, data=GvHD, filter=n2Filter.results,

+ names=TRUE, par.settings=list(gate=list(fill="black", alpha=0.2,

+ col="transparent"),

+ gate.text=list(col="darkred", alpha=0.7, cex=0.6)))

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

Lymphocytes+

1

0 200 400 600 8001000

Lymphocytes+

2

Lymphocytes+

3

0 200 400 600 8001000

Lymphocytes+

4

0 200 400 600 8001000

Lymphocytes+

5

Lymphocytes+

6

0 200 400 600 8001000

0

200

400

600

800

1000

Lymphocytes+

7

5 Restrictions on the formula interface

We mentioned before that all elements of the formulae used in flowViz are evaluated in the context of either the raw
data matrix or the phenoData slot. This implies that formula components can themselves be valid R expressions
including function calls. To a certain extend this is true, and the user might be able to produce reasonable
graphical output by evaluating expressions on existing data or annotation objects, however we strongly discourage
this use. The software makes certain assumptions on the relationship between gate definitions and data, the most
prominent one being that both are on the same scale. The use of expressions in flowViz potentially changes the
scale of the raw data, in which case the gate representation doesn’t make much sense anymore. Furthermore, FCM
data is naturally censored (by the available measurement range of the instrument) and we try to protect the user
from irritating visual artifacts caused by the piling up of events on the margins of the data range. This is most
notable in the one-dimensional densityplots, where densities are only computed within the data range, and margin
events are added as vertical bars. Similarily, in the two-dimensional smoothed scatter plots, we display margin
events as ticks around the actual data display. Again, changing the scale of the data would potentially invalidate
many of the necessary computations.

13

In summary, lattice encourages the use of expressions in the formula interface and for the sake of customizability
we didn’t want to exclude this feature completely in the flowViz methods. However, the tool has to be used with
great care, particularly when plotting gates.

6 Filters in parallel coodinate plots

Although the filter argument does not make much sense except in scatter plots, filterResults can be used for
grouping in other contexts. So far, only the parallel method supports this syntax.

> parallel(~ . | Visit, GvHD, filter=n2Filter.results, alpha = 0.01)

FSC−H

SSC−H

FL1−H

FL2−H

FL3−H

FL2−A

FL4−H

Min Max

1 2

Min Max

3 4
FSC−H

SSC−H

FL1−H

FL2−H

FL3−H

FL2−A

FL4−H
5

Min Max

6 7

14

References

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008.

15

	Introduction
	Filters and filter results
	Visualization
	Example Data

	Filters in scatter plots
	Simple Geometric Filter Types
	Data-Driven Filters

	Filters in one-dimensional density plots
	Plotting parameters
	Restrictions on the formula interface
	Filters in parallel coodinate plots

