# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
::install_github("IMB-Computational-Genomics-Lab/scGPS")
devtools
# for C++ compilation trouble-shooting, manual download and installation can be
# done from github
://github.com/IMB-Computational-Genomics-Lab/scGPS
git clone https
# then check in scGPS/src if any of the precompiled (e.g. those with *.so and
# *.o) files exist and delete them before recompiling
# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
::install()
devtools#load the package to the workspace
library(scGPS)
The purpose of this workflow is to solve the following task:
# load mixed population 1 (loaded from day_2_cardio_cell_sample dataset,
# named it as day2)
library(scGPS)
day_2_cardio_cell_sample
day2 <- new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
mixedpop1 <-GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# load mixed population 2 (loaded from day_5_cardio_cell_sample dataset,
# named it as day5)
day_5_cardio_cell_sample
day5 <- new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
mixedpop2 <-GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
# select a subpopulation
1
c_selectID <-# load gene list (this can be any lists of user selected genes)
training_gene_sample
genes <- genes$Merged_unique
genes <-# load cluster information
colData(mixedpop1)[,1]
cluster_mixedpop1 <- colData(mixedpop2)[,1]
cluster_mixedpop2 <-#run training (running nboots = 3 here, but recommend to use nboots = 50-100)
bootstrap_prediction(nboots = 3, mixedpop1 = mixedpop1,
LSOLDA_dat <-mixedpop2 = mixedpop2, genes = genes, c_selectID = c_selectID,
listData = list(), cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2, trainset_ratio = 0.7)
names(LSOLDA_dat)
#> [1] "Accuracy" "ElasticNetGenes" "Deviance"
#> [4] "ElasticNetFit" "LDAFit" "predictor_S1"
#> [7] "ElasticNetPredict" "LDAPredict" "cell_results"
# summary results LDA
summary_prediction_lda(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
sum_pred_lda <-# summary results Lasso to show the percent of cells
# classified as cells belonging
summary_prediction_lasso(LSOLDA_dat = LSOLDA_dat,
sum_pred_lasso <-nPredSubpop = 4)
# plot summary results
function(sum_dat){
plot_sum <- t(sum_dat)
sum_dat_tf <- na.omit(sum_dat_tf)
sum_dat_tf <- apply(sum_dat[, -ncol(sum_dat)],1,
sum_dat_tf <-function(x){as.numeric(as.vector(x))})
$names <- gsub("ElasticNet for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
sum_dat$names <- gsub("LDA for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
sum_datcolnames(sum_dat_tf) <- sum_dat$names
boxplot(sum_dat_tf, las=2)
}plot_sum(sum_pred_lasso)
plot_sum(sum_pred_lda)
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 68.39623 64.59330 64.95327
# summary maximum deviance explained by the model
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "6.69" "6.56" "8.57"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 8.57 genes_cluster1
#> 2 1 8.57 genes_cluster1
#> 3 3 8.57 genes_cluster1
#> 4 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
The purpose of this workflow is to solve the following task:
(skip this step if clusters are known)
# find clustering information in an expresion data using CORE
day_5_cardio_cell_sample
day5 <- colnames(day5$dat5_counts)
cellnames <-$dat5_clusters
cluster <-day5data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
cellnames <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
mixedpop2 <-GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames)
CORE_clustering(mixedpop2, remove_outlier = c(0), PCA=FALSE)
CORE_cluster <-
# to update the clustering information, users can ...
CORE_cluster$optimalClust$KeyStats$Height
key_height <- CORE_cluster$optimalClust$OptimalRes
optimal_res <- which(key_height == optimal_res)
optimal_index =
unname(unlist(
clustering_after_outlier_removal <-$Cluster[[optimal_index]]))
CORE_cluster CORE_cluster$cellsForClustering
corresponding_cells_after_outlier_removal <- colData(mixedpop2)[,2]
original_cells_before_removal <- match(corresponding_cells_after_outlier_removal,
corresponding_index <-
original_cells_before_removal )# check the matching
identical(as.character(original_cells_before_removal[corresponding_index]),
corresponding_cells_after_outlier_removal)#> [1] TRUE
# create new object with the new clustering after removing outliers
mixedpop2[,corresponding_index]
mixedpop2_post_clustering <-colData(mixedpop2_post_clustering)[,1] <- clustering_after_outlier_removal
(skip this step if clusters are known)
(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)
# find clustering information in an expresion data using SCORE
day_5_cardio_cell_sample
day5 <- colnames(day5$dat5_counts)
cellnames <-$dat5_clusters
cluster <-day5data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
cellnames <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
mixedpop2 <-GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames )
CORE_bagging(mixedpop2, remove_outlier = c(0), PCA=FALSE,
SCORE_test <-bagging_run = 20, subsample_proportion = .8)
dev.off()
#> null device
#> 1
##3.2.1 plot CORE clustering
plot_CORE(CORE_cluster$tree, CORE_cluster$Cluster,
p1 <-color_branch = c("#208eb7", "#6ce9d3", "#1c5e39", "#8fca40", "#154975",
"#b1c8eb"))
p1#> $mar
#> [1] 1 5 0 1
#extract optimal index identified by CORE
CORE_cluster$optimalClust$KeyStats$Height
key_height <- CORE_cluster$optimalClust$OptimalRes
optimal_res <- which(key_height == optimal_res)
optimal_index =#plot one optimal clustering bar
plot_optimal_CORE(original_tree= CORE_cluster$tree,
optimal_cluster = unlist(CORE_cluster$Cluster[optimal_index]),
shift = -2000)
#> Ordering and assigning labels...
#> 2
#> 162335NA
#> 3
#> 162335423
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
##3.2.2 plot SCORE clustering
#plot all clustering bars
plot_CORE(SCORE_test$tree, list_clusters = SCORE_test$Cluster)
#plot one stable optimal clustering bar
plot_optimal_CORE(original_tree= SCORE_test$tree,
optimal_cluster = unlist(SCORE_test$Cluster[
$optimal_index]),
SCORE_testshift = -100)
#> Ordering and assigning labels...
#> 2
#> 24112NANANANANA
#> 3
#> 24112250NANANANA
#> 4
#> 24112250335NANANA
#> 5
#> 24112250335367NANA
#> 6
#> 24112250335367414NA
#> 7
#> 24112250335367414470
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
tSNE(expression.mat=assay(mixedpop2))
t <-#> Preparing PCA inputs using the top 1500 genes ...
#> Computing PCA values...
#> Running tSNE ...
plot_reduced(t, color_fac = factor(colData(mixedpop2)[,1]),
p2 <-palletes =1:length(unique(colData(mixedpop2)[,1])))
#> Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
#> ℹ Please use `after_stat(count)` instead.
#> ℹ The deprecated feature was likely used in the cowplot package.
#> Please report the issue at <https://github.com/wilkelab/cowplot/issues>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Warning: Use of `reduced_dat_toPlot$Dim1` is discouraged.
#> ℹ Use `Dim1` instead.
#> Warning: Use of `reduced_dat_toPlot$Dim2` is discouraged.
#> ℹ Use `Dim2` instead.
p2
#load gene list (this can be any lists of user-selected genes)
genes <-training_gene_sample$Merged_unique
genes <-genes
#the gene list can also be objectively identified by differential expression
#analysis cluster information is requied for find_markers. Here, we use
#CORE results.
#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])
suppressMessages(library(locfit))
find_markers(expression_matrix=assay(mixedpop2),
DEgenes <-cluster = colData(mixedpop2)[,1],
selected_cluster=unique(colData(mixedpop2)[,1]))
#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] "baseMean" "log2FoldChange" "lfcSE" "stat"
#> [5] "pvalue" "padj" "id"
#you can annotate the identified clusters
DEgenes$DE_Subpop1vsRemaining$id
DEgeneList_1vsOthers <-
#users need to check the format of the gene input to make sure they are
#consistent to the gene names in the expression matrix
#the following command saves the file "PathwayEnrichment.xlsx" to the
#working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
as.factor(DEgeneList_1vsOthers[seq_len(500)])
genes500 <- annotate_clusters(genes, pvalueCutoff=0.05, gene_symbol=TRUE)
enrichment_test <-
#the enrichment outputs can be displayed by running
::dotplot(enrichment_test, showCategory=10, font.size = 6) clusterProfiler
The purpose of this workflow is to solve the following task:
#select a subpopulation, and input gene list
1
c_selectID <-#note make sure the format for genes input here is the same to the format
#for genes in the mixedpop1 and mixedpop2
DEgenes$id[1:500]
genes =
#run the test bootstrap with nboots = 2 runs
colData(mixedpop1)[,1]
cluster_mixedpop1 <- colData(mixedpop2)[,1]
cluster_mixedpop2 <-
bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
LSOLDA_dat <-mixedpop2 = mixedpop2, genes = genes,
c_selectID = c_selectID,
listData = list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#get the number of rows for the summary matrix
length(unique(colData(mixedpop2)[,1]))
row_cluster <-
#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#> V1 V2 names
#> 1 6.95187165775401 40.1069518716578 LDA for subpop 1 in target mixedpop2
#> 2 53.5714285714286 98.5714285714286 LDA for subpop 2 in target mixedpop2
#> 3 1.50375939849624 42.1052631578947 LDA for subpop 3 in target mixedpop2
#> 4 15 60 LDA for subpop 4 in target mixedpop2
#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#> V1 V2 names
#> 1 36.3636363636364 64.7058823529412 ElasticNet for subpop1 in target mixedpop2
#> 2 100 100 ElasticNet for subpop2 in target mixedpop2
#> 3 83.4586466165414 86.4661654135338 ElasticNet for subpop3 in target mixedpop2
#> 4 90 90 ElasticNet for subpop4 in target mixedpop2
# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "50.91" "52.15"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 52.15 genes_cluster1
#> 2 1 52.15 genes_cluster1
#> 3 3 52.15 genes_cluster1
#> 4 5 52.15 genes_cluster1
#> 5 6 52.15 genes_cluster1
#> 6 9 52.15 genes_cluster1
#> 7 10 52.15 genes_cluster1
#> 8 13 52.15 genes_cluster1
#> 9 14 52.15 genes_cluster1
#> 10 20 52.15 genes_cluster1
#> 11 22 52.15 genes_cluster1
#> 12 26 52.15 genes_cluster1
#> 13 28 52.15 genes_cluster1
#> 14 32 52.15 genes_cluster1
#> 15 36 52.15 genes_cluster1
#> 16 41 52.15 genes_cluster1
#> 17 45 52.15 genes_cluster1
#> 18 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 68.75000 67.41071
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
colData(mixedpop1)[,1]
cluster_mixedpop1 <- colData(mixedpop2)[,1]
cluster_mixedpop2 <-#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))
1
c_selectID <-#top 200 gene markers distinguishing cluster 1
DEgenes$id[1:200]
genes =
bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
LSOLDA_dat1 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
2
c_selectID <- DEgenes$id[1:200]
genes =
bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
LSOLDA_dat2 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
3
c_selectID <- DEgenes$id[1:200]
genes = bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
LSOLDA_dat3 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
4
c_selectID <- DEgenes$id[1:200]
genes = bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
LSOLDA_dat4 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
reformat_LASSO(c_selectID=1, mp_selectID = 2,
LASSO_C1S2 <-LSOLDA_dat=LSOLDA_dat1,
nPredSubpop = length(unique(colData(mixedpop2)
1])),
[,Nodes_group ="#7570b3")
reformat_LASSO(c_selectID=2, mp_selectID =2,
LASSO_C2S2 <-LSOLDA_dat=LSOLDA_dat2,
nPredSubpop = length(unique(colData(mixedpop2)
1])),
[,Nodes_group ="#1b9e77")
reformat_LASSO(c_selectID=3, mp_selectID =2,
LASSO_C3S2 <-LSOLDA_dat=LSOLDA_dat3,
nPredSubpop = length(unique(colData(mixedpop2)
1])),
[,Nodes_group ="#e7298a")
reformat_LASSO(c_selectID=4, mp_selectID =2,
LASSO_C4S2 <-LSOLDA_dat=LSOLDA_dat4,
nPredSubpop = length(unique(colData(mixedpop2)
1])),
[,Nodes_group ="#00FFFF")
rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]
combined <-
2
nboots =#links: source, target, value
#source: node, nodegroup
list(Nodes=combined[,(nboots+3):(nboots+4)],
combined_D3obj <-Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
library(networkD3)
as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_target <-unique(c(Node_source, Node_target))
Node_all <-
#assign IDs for Source (start from 0)
$Links$Source
Source <-combined_D3obj combined_D3obj$Links$Target
Target <-
for(i in 1:length(Node_all)){
==Node_all[i]] <-i-1
Source[Source==Node_all[i]] <-i-1
Target[Target
}#
$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
combined_D3obj
#prepare node info
data.frame(Node=Node_all)
node_df <-$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
node_df
suppressMessages(library(dplyr))
combined %>% count(Node, color=NodeGroup) %>% select(2)
Color <-$color <- Color$color
node_df
suppressMessages(library(networkD3))
sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
p1<-Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
#saveNetwork(p1, file = paste0(path,'Subpopulation_Net.html'))
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
colData(mixedpop1)[,1]
cluster_mixedpop1 <- colData(mixedpop2)[,1]
cluster_mixedpop2 <-length(unique(colData(mixedpop2)[,1]))
row_cluster <-
1
c_selectID <-#top 200 gene markers distinguishing cluster 1
DEgenes$id[1:200]
genes = bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
LSOLDA_dat1 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
2
c_selectID <- DEgenes$id[1:200]
genes = bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
LSOLDA_dat2 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
3
c_selectID <- DEgenes$id[1:200]
genes = bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
LSOLDA_dat3 <-mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
reformat_LASSO(c_selectID=1, mp_selectID = 1,
LASSO_C1S1 <-LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster,
Nodes_group = "#7570b3")
reformat_LASSO(c_selectID=2, mp_selectID = 1,
LASSO_C2S1 <-LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster,
Nodes_group = "#1b9e77")
reformat_LASSO(c_selectID=3, mp_selectID = 1,
LASSO_C3S1 <-LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster,
Nodes_group = "#e7298a")
rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)
combined <-
2
nboots =#links: source, target, value
#source: node, nodegroup
list(Nodes=combined[,(nboots+3):(nboots+4)],
combined_D3obj <-Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined[is.na(combined$Value) != TRUE,]
combined <-
library(networkD3)
as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_target <-unique(c(Node_source, Node_target))
Node_all <-
#assign IDs for Source (start from 0)
$Links$Source
Source <-combined_D3obj combined_D3obj$Links$Target
Target <-
for(i in 1:length(Node_all)){
==Node_all[i]] <-i-1
Source[Source==Node_all[i]] <-i-1
Target[Target
}
$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
combined_D3obj
#prepare node info
data.frame(Node=Node_all)
node_df <-$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
node_df
suppressMessages(library(dplyr))
length(unique(node_df$Node))
n <- colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
getPalette = getPalette(n)
Color =$color <- Color
node_dfsuppressMessages(library(networkD3))
sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
p1<-Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
#saveNetwork(p1, file = paste0(path,'Subpopulation_Net.html'))
::session_info()
devtools#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.3.1 (2023-06-16)
#> os Ubuntu 22.04.3 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2023-10-24
#> pandoc 2.7.3 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> abind 1.4-5 2016-07-21 [2] CRAN (R 4.3.1)
#> AnnotationDbi * 1.64.0 2023-10-24 [2] Bioconductor
#> AnnotationHub 3.10.0 2023-10-24 [2] Bioconductor
#> ape 5.7-1 2023-03-13 [2] CRAN (R 4.3.1)
#> aplot 0.2.2 2023-10-06 [2] CRAN (R 4.3.1)
#> Biobase * 2.62.0 2023-10-24 [2] Bioconductor
#> BiocFileCache 2.10.0 2023-10-24 [2] Bioconductor
#> BiocGenerics * 0.48.0 2023-10-24 [2] Bioconductor
#> BiocManager 1.30.22 2023-08-08 [2] CRAN (R 4.3.1)
#> BiocParallel 1.36.0 2023-10-24 [2] Bioconductor
#> BiocVersion 3.18.0 2023-10-24 [2] Bioconductor
#> Biostrings 2.70.0 2023-10-24 [2] Bioconductor
#> bit 4.0.5 2022-11-15 [2] CRAN (R 4.3.1)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.3.1)
#> bitops 1.0-7 2021-04-24 [2] CRAN (R 4.3.1)
#> blob 1.2.4 2023-03-17 [2] CRAN (R 4.3.1)
#> bslib 0.5.1 2023-08-11 [2] CRAN (R 4.3.1)
#> cachem 1.0.8 2023-05-01 [2] CRAN (R 4.3.1)
#> callr 3.7.3 2022-11-02 [2] CRAN (R 4.3.1)
#> caret * 6.0-94 2023-03-21 [2] CRAN (R 4.3.1)
#> class 7.3-22 2023-05-03 [3] CRAN (R 4.3.1)
#> cli 3.6.1 2023-03-23 [2] CRAN (R 4.3.1)
#> clusterProfiler * 4.10.0 2023-10-24 [2] Bioconductor
#> codetools 0.2-19 2023-02-01 [3] CRAN (R 4.3.1)
#> colorspace 2.1-0 2023-01-23 [2] CRAN (R 4.3.1)
#> cowplot 1.1.1 2020-12-30 [2] CRAN (R 4.3.1)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.3.1)
#> curl 5.1.0 2023-10-02 [2] CRAN (R 4.3.1)
#> data.table 1.14.8 2023-02-17 [2] CRAN (R 4.3.1)
#> DBI 1.1.3 2022-06-18 [2] CRAN (R 4.3.1)
#> dbplyr 2.3.4 2023-09-26 [2] CRAN (R 4.3.1)
#> DelayedArray 0.28.0 2023-10-24 [2] Bioconductor
#> dendextend 1.17.1 2023-03-25 [2] CRAN (R 4.3.1)
#> DESeq2 * 1.42.0 2023-10-24 [2] Bioconductor
#> devtools 2.4.5 2022-10-11 [2] CRAN (R 4.3.1)
#> digest 0.6.33 2023-07-07 [2] CRAN (R 4.3.1)
#> DOSE * 3.28.0 2023-10-24 [2] Bioconductor
#> dplyr * 1.1.3 2023-09-03 [2] CRAN (R 4.3.1)
#> dynamicTreeCut * 1.63-1 2016-03-11 [2] CRAN (R 4.3.1)
#> e1071 1.7-13 2023-02-01 [2] CRAN (R 4.3.1)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.3.1)
#> enrichplot 1.22.0 2023-10-24 [2] Bioconductor
#> evaluate 0.22 2023-09-29 [2] CRAN (R 4.3.1)
#> fansi 1.0.5 2023-10-08 [2] CRAN (R 4.3.1)
#> farver 2.1.1 2022-07-06 [2] CRAN (R 4.3.1)
#> fastcluster 1.2.3 2021-05-24 [2] CRAN (R 4.3.1)
#> fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.3.1)
#> fastmatch 1.1-4 2023-08-18 [2] CRAN (R 4.3.1)
#> fgsea 1.28.0 2023-10-24 [2] Bioconductor
#> filelock 1.0.2 2018-10-05 [2] CRAN (R 4.3.1)
#> foreach 1.5.2 2022-02-02 [2] CRAN (R 4.3.1)
#> fs 1.6.3 2023-07-20 [2] CRAN (R 4.3.1)
#> future 1.33.0 2023-07-01 [2] CRAN (R 4.3.1)
#> future.apply 1.11.0 2023-05-21 [2] CRAN (R 4.3.1)
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.3.1)
#> GenomeInfoDb * 1.38.0 2023-10-24 [2] Bioconductor
#> GenomeInfoDbData 1.2.11 2023-10-17 [2] Bioconductor
#> GenomicRanges * 1.54.0 2023-10-24 [2] Bioconductor
#> ggforce 0.4.1 2022-10-04 [2] CRAN (R 4.3.1)
#> ggfun 0.1.3 2023-09-15 [2] CRAN (R 4.3.1)
#> ggplot2 * 3.4.4 2023-10-12 [2] CRAN (R 4.3.1)
#> ggplotify 0.1.2 2023-08-09 [2] CRAN (R 4.3.1)
#> ggraph 2.1.0 2022-10-09 [2] CRAN (R 4.3.1)
#> ggrepel 0.9.4 2023-10-13 [2] CRAN (R 4.3.1)
#> ggtree 3.10.0 2023-10-24 [2] Bioconductor
#> glmnet 4.1-8 2023-08-22 [2] CRAN (R 4.3.1)
#> globals 0.16.2 2022-11-21 [2] CRAN (R 4.3.1)
#> glue 1.6.2 2022-02-24 [2] CRAN (R 4.3.1)
#> GO.db 3.18.0 2023-09-21 [2] Bioconductor
#> GOSemSim 2.28.0 2023-10-24 [2] Bioconductor
#> gower 1.0.1 2022-12-22 [2] CRAN (R 4.3.1)
#> graph 1.80.0 2023-10-24 [2] Bioconductor
#> graphite 1.48.0 2023-10-24 [2] Bioconductor
#> graphlayouts 1.0.1 2023-09-19 [2] CRAN (R 4.3.1)
#> gridExtra 2.3 2017-09-09 [2] CRAN (R 4.3.1)
#> gridGraphics 0.5-1 2020-12-13 [2] CRAN (R 4.3.1)
#> gson 0.1.0 2023-03-07 [2] CRAN (R 4.3.1)
#> gtable 0.3.4 2023-08-21 [2] CRAN (R 4.3.1)
#> hardhat 1.3.0 2023-03-30 [2] CRAN (R 4.3.1)
#> HDO.db 0.99.1 2023-06-20 [2] Bioconductor
#> HPO.db 0.99.2 2023-10-18 [2] Bioconductor
#> htmltools 0.5.6.1 2023-10-06 [2] CRAN (R 4.3.1)
#> htmlwidgets 1.6.2 2023-03-17 [2] CRAN (R 4.3.1)
#> httpuv 1.6.12 2023-10-23 [2] CRAN (R 4.3.1)
#> httr 1.4.7 2023-08-15 [2] CRAN (R 4.3.1)
#> igraph 1.5.1 2023-08-10 [2] CRAN (R 4.3.1)
#> interactiveDisplayBase 1.40.0 2023-10-24 [2] Bioconductor
#> ipred 0.9-14 2023-03-09 [2] CRAN (R 4.3.1)
#> IRanges * 2.36.0 2023-10-24 [2] Bioconductor
#> iterators 1.0.14 2022-02-05 [2] CRAN (R 4.3.1)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.3.1)
#> jsonlite 1.8.7 2023-06-29 [2] CRAN (R 4.3.1)
#> KEGGREST 1.42.0 2023-10-24 [2] Bioconductor
#> knitr 1.44 2023-09-11 [2] CRAN (R 4.3.1)
#> labeling 0.4.3 2023-08-29 [2] CRAN (R 4.3.1)
#> later 1.3.1 2023-05-02 [2] CRAN (R 4.3.1)
#> lattice * 0.22-5 2023-10-24 [3] CRAN (R 4.3.1)
#> lava 1.7.2.1 2023-02-27 [2] CRAN (R 4.3.1)
#> lazyeval 0.2.2 2019-03-15 [2] CRAN (R 4.3.1)
#> lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.3.1)
#> listenv 0.9.0 2022-12-16 [2] CRAN (R 4.3.1)
#> locfit * 1.5-9.8 2023-06-11 [2] CRAN (R 4.3.1)
#> lubridate 1.9.3 2023-09-27 [2] CRAN (R 4.3.1)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.3.1)
#> MASS 7.3-60 2023-05-04 [3] CRAN (R 4.3.1)
#> Matrix 1.6-1.1 2023-09-18 [3] CRAN (R 4.3.1)
#> MatrixGenerics * 1.14.0 2023-10-24 [2] Bioconductor
#> matrixStats * 1.0.0 2023-06-02 [2] CRAN (R 4.3.1)
#> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.3.1)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.3.1)
#> miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.3.1)
#> ModelMetrics 1.2.2.2 2020-03-17 [2] CRAN (R 4.3.1)
#> MPO.db 0.99.7 2023-10-18 [2] Bioconductor
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.3.1)
#> networkD3 * 0.4 2017-03-18 [2] CRAN (R 4.3.1)
#> nlme 3.1-163 2023-08-09 [3] CRAN (R 4.3.1)
#> nnet 7.3-19 2023-05-03 [3] CRAN (R 4.3.1)
#> org.Hs.eg.db * 3.18.0 2023-09-21 [2] Bioconductor
#> parallelly 1.36.0 2023-05-26 [2] CRAN (R 4.3.1)
#> patchwork 1.1.3 2023-08-14 [2] CRAN (R 4.3.1)
#> pillar 1.9.0 2023-03-22 [2] CRAN (R 4.3.1)
#> pkgbuild 1.4.2 2023-06-26 [2] CRAN (R 4.3.1)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.3.1)
#> pkgload 1.3.3 2023-09-22 [2] CRAN (R 4.3.1)
#> plyr 1.8.9 2023-10-02 [2] CRAN (R 4.3.1)
#> png 0.1-8 2022-11-29 [2] CRAN (R 4.3.1)
#> polyclip 1.10-6 2023-09-27 [2] CRAN (R 4.3.1)
#> prettyunits 1.2.0 2023-09-24 [2] CRAN (R 4.3.1)
#> pROC 1.18.4 2023-07-06 [2] CRAN (R 4.3.1)
#> processx 3.8.2 2023-06-30 [2] CRAN (R 4.3.1)
#> prodlim 2023.08.28 2023-08-28 [2] CRAN (R 4.3.1)
#> profvis 0.3.8 2023-05-02 [2] CRAN (R 4.3.1)
#> promises 1.2.1 2023-08-10 [2] CRAN (R 4.3.1)
#> proxy 0.4-27 2022-06-09 [2] CRAN (R 4.3.1)
#> ps 1.7.5 2023-04-18 [2] CRAN (R 4.3.1)
#> purrr 1.0.2 2023-08-10 [2] CRAN (R 4.3.1)
#> qvalue 2.34.0 2023-10-24 [2] Bioconductor
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.3.1)
#> rappdirs 0.3.3 2021-01-31 [2] CRAN (R 4.3.1)
#> RColorBrewer 1.1-3 2022-04-03 [2] CRAN (R 4.3.1)
#> Rcpp 1.0.11 2023-07-06 [2] CRAN (R 4.3.1)
#> RcppArmadillo 0.12.6.4.0 2023-09-10 [2] CRAN (R 4.3.1)
#> RcppParallel 5.1.7 2023-02-27 [2] CRAN (R 4.3.1)
#> RCurl 1.98-1.12 2023-03-27 [2] CRAN (R 4.3.1)
#> reactome.db 1.86.0 2023-10-17 [2] Bioconductor
#> ReactomePA * 1.46.0 2023-10-24 [2] Bioconductor
#> recipes 1.0.8 2023-08-25 [2] CRAN (R 4.3.1)
#> remotes 2.4.2.1 2023-07-18 [2] CRAN (R 4.3.1)
#> reshape2 1.4.4 2020-04-09 [2] CRAN (R 4.3.1)
#> rlang 1.1.1 2023-04-28 [2] CRAN (R 4.3.1)
#> rmarkdown 2.25 2023-09-18 [2] CRAN (R 4.3.1)
#> rpart 4.1.21 2023-10-09 [3] CRAN (R 4.3.1)
#> RSQLite 2.3.1 2023-04-03 [2] CRAN (R 4.3.1)
#> Rtsne 0.16 2022-04-17 [2] CRAN (R 4.3.1)
#> S4Arrays 1.2.0 2023-10-24 [2] Bioconductor
#> S4Vectors * 0.40.0 2023-10-24 [2] Bioconductor
#> sass 0.4.7 2023-07-15 [2] CRAN (R 4.3.1)
#> scales 1.2.1 2022-08-20 [2] CRAN (R 4.3.1)
#> scatterpie 0.2.1 2023-06-07 [2] CRAN (R 4.3.1)
#> scGPS * 1.16.0 2023-10-24 [1] Bioconductor
#> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.3.1)
#> shadowtext 0.1.2 2022-04-22 [2] CRAN (R 4.3.1)
#> shape 1.4.6 2021-05-19 [2] CRAN (R 4.3.1)
#> shiny 1.7.5.1 2023-10-14 [2] CRAN (R 4.3.1)
#> SingleCellExperiment * 1.24.0 2023-10-24 [2] Bioconductor
#> SparseArray 1.2.0 2023-10-24 [2] Bioconductor
#> stringi 1.7.12 2023-01-11 [2] CRAN (R 4.3.1)
#> stringr 1.5.0 2022-12-02 [2] CRAN (R 4.3.1)
#> SummarizedExperiment * 1.32.0 2023-10-24 [2] Bioconductor
#> survival 3.5-7 2023-08-14 [3] CRAN (R 4.3.1)
#> tibble 3.2.1 2023-03-20 [2] CRAN (R 4.3.1)
#> tidygraph 1.2.3 2023-02-01 [2] CRAN (R 4.3.1)
#> tidyr 1.3.0 2023-01-24 [2] CRAN (R 4.3.1)
#> tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.3.1)
#> tidytree 0.4.5 2023-08-10 [2] CRAN (R 4.3.1)
#> timechange 0.2.0 2023-01-11 [2] CRAN (R 4.3.1)
#> timeDate 4022.108 2023-01-07 [2] CRAN (R 4.3.1)
#> treeio 1.26.0 2023-10-24 [2] Bioconductor
#> tweenr 2.0.2 2022-09-06 [2] CRAN (R 4.3.1)
#> urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.3.1)
#> usethis 2.2.2 2023-07-06 [2] CRAN (R 4.3.1)
#> utf8 1.2.4 2023-10-22 [2] CRAN (R 4.3.1)
#> vctrs 0.6.4 2023-10-12 [2] CRAN (R 4.3.1)
#> viridis 0.6.4 2023-07-22 [2] CRAN (R 4.3.1)
#> viridisLite 0.4.2 2023-05-02 [2] CRAN (R 4.3.1)
#> withr 2.5.1 2023-09-26 [2] CRAN (R 4.3.1)
#> xfun 0.40 2023-08-09 [2] CRAN (R 4.3.1)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.3.1)
#> XVector 0.42.0 2023-10-24 [2] Bioconductor
#> yaml 2.3.7 2023-01-23 [2] CRAN (R 4.3.1)
#> yulab.utils 0.1.0 2023-09-20 [2] CRAN (R 4.3.1)
#> zlibbioc 1.48.0 2023-10-24 [2] Bioconductor
#>
#> [1] /tmp/RtmpnJviOk/Rinst339749cf88fe9
#> [2] /home/biocbuild/bbs-3.18-bioc/R/site-library
#> [3] /home/biocbuild/bbs-3.18-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────