Combining SNP P-Values in Gene Sets:
the cpvSNP Package

Caitlin McHugh'>*, Jason Hackney', and Jessica
L. Larson'

[Lem] * Department of Bioinformatics and Computational Biology, Genentech, Inc.
2 Department of Biostatistics, University of Washington
*mchughc (at) uw.edu

October 30, 2018

Contents
1 Introduction 2
2 Example workflow for covSNP. 2
2.1 Preparing a dataset foranalysis 2
22 RunningGLOSSI., 5
23 RunningVEGAS, 7
2.4 \VisualizingResults, 8
3 Methodsinbrief. L. 10
3.1 GLOSSImethods. 10
32 VEGASmethods 11
4 Sessioninfo 12

5 References.......... 13

Combining SNP P-Values in Gene Sets: the cpvSNP Package

y

Introduction

Genome-wide association studies (GWAS) have lead to the discovery of many
disease-associated single nucleotide polymorphisms (SNPs). Researchers are
often interested in extending these studies to determine the genetic associa-
tion of a given pathway (i.e., a gene set) with a certain phenotype. Gene set
methods allow users to combine SNP-level association p-values across multiple
biologically related genes.

The cpvSNP package provides code for two gene set analysis methods [1-2] and
accurately corrects for the correlation structure among observed SNPs. Both
of the implemented methods translate a set of gene ids to their corresponding
SNPs, and combine the p-values for those SNPs. Calculated statistics, degrees
of freedom, and corresponding p-values are stored for each gene set.

This vignette describes a typical analysis workflow and includes some details
regarding the statistical theory behind cpvSNP. For more technical details, please
see references [1] and [2].

Example workflow for cpovSNP

2.1

Preparing a dataset for analysis

For our example, we will use a set of simulated data, the geneSetAnalysis
dataset from the cpvSNP package. We begin by loading relevant libraries, sub-
setting the data, and running createArrayData on this data set.

> library(cpvSNP)
> data(geneSetAnalysis)
> names (geneSetAnalysis)

| [1] "arrayData" "geneSets" "ldMat" "indepSNPs"

The geneSetAnalysis list holds four elements, each of which we will need for
this vignette. The first object, arrayData, is a data.frame containing the p-
values, SNP ids, genomic position, and chromosome of all the probes in our hy-
pothetical GWAS. Our first step is to use the cpvSNP function createArrayData
to convert this data.frame to a GRanges object.

> arrayDataGR <- createArrayData(geneSetAnalysis[["arrayData"]],
+ positionName="Position")
> class(arrayDataGR)

Combining SNP P-Values in Gene Sets: the cpvSNP Package

[1] "GRanges"
attr(, "package")
[1] "GenomicRanges"

The geneSetAnalysis list also contains a GeneSetCollection with two sets
of interest. We can find the Entrez ids by accessing the genelIds slot of the
GeneSetCollection.

> geneSets <- geneSetAnalysis[["geneSets"]]

> geneSets
GeneSetCollection
names: setl, set2 (2 total)
unique identifiers: 100505495, 11128, ..., 80243 (250 total)

types in collection:
geneldType: Nullldentifier (1 total)
collectionType: NullCollection (1 total)

> length(geneSets)

| 111 2

> head(genelds(geneSets[[1]]))

| [1] "100505495" "11128" "2857" "2002" "84466" "100506696"
> details(geneSets[[1]])

setName: setl

genelds: 100505495, 11128, ..., 6857 (total: 200)
geneIdType: Null

collectionType: Null

setIdentifier: rescomp216:19144:2014-08-28 13:23:17:1192854957
description: Randomly sampled gene set 1
organism:

pubMedIds:

urls:

contributor:

setVersion: 0.0.1

creationDate: Fri Aug 8 13:47:58 2014

> head(genelds(geneSets[[2]]))
| [1] "9447" "6741" "647979" "7846" "55350" "285987"

Our next data formatting step is to convert the ids in our GeneSetCollection
from Entrez gene ids to their corresponding SNP ids. In this example, our SNP
positions are coded in the hgl9 genome build. Please be careful when convert-
ing gene ids to SNPs, as mappings change between genome build updates. The

Combining SNP P-Values in Gene Sets: the cpvSNP Package

geneToSNPList function requires gene transcripts stored as a GRanges object,
along with the GRanges object specific to our study. For this example, we will use
the gene transcripts stored in the database TxDb.Hsapiens.UCSC.hg19.knownGene

vV V. V VvV V

[1] "GeneSetCollection"
attr(,"package")
[1] "GSEABase"

library(TxDb.Hsapiens.UCSC.hgl9.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene
genesHgl9 <- genes(txdb)
snpsGSC <- geneToSNPList(geneSets, arrayDataGR, genesHgl9)
class(snpsGSC)

Note that the geneToSNPList function has a quiet option defaulted to TRUE
which suppresses all warnings that may arise when finding overlaps between the
genes in our collection and our study SNPs. The default is set to TRUE because
there are often warnings that are usually not an issue. However, please be aware
that valid warnings may also be suppressed if the quiet option is set to TRUE.

We now have the two input files required to run GLOSSI [1] and VEGAS [2]:
a GRanges object for the SNPs in our GWAS, and a GeneSetCollection with
SNP ids for each gene in each set.

> arrayDataGR

[1]
[2]
[3]
[4]
[5]
[1474]
[1475]
[1476]

[1477]
[1478]

[1]
[2]
[3]
[4]

Segnames

ranges s

<Rle> <IRanges>

chrl
chrl
chrl
chrl
chrl

12686368
12686476
12687753
12691826
12692907

chrl 223543792
chrl 223544114
chrl 223544169
chrl 223544430
chrl 223551121

chromosome
<factor>
chrl

chrl

chrl

chrl

Start
<numeric>
12686368
12686476
12687753
12691826

GRanges object with 1478 ranges and 6 metadata columns:

trand | P

<Rle> | <numeric>

* | 0.438553040847182

* | 0.967386244097725

* | 0.803473654901609

* | 0.76892595179379

* | 0.602467419346794

* | 0.599404839565977

* | 0.211034214356914

* | 0.846048331353813

* | 0.299469595309347

* | 0.145220536971465
End
<numeric>
12686368
12686476
12687753
12691826

SNP
<character>
rsl0779772
rs3010868
rs4568844
rs3010872
rs3000873

rs6681438
rs12024361
rs12042076
rs2036497
rs596166

Position
<integer>
12686368
12686476
12687753
12691826
12692907

223543792
223544114
223544169
223544430
223551121

Combining SNP P-Values in Gene Sets: the cpvSNP Package

2.2

[5]
[1474]
[1475]
[1476]

[1477]
[1478]

> snpsGSC

names: setl,

chrl
chrl
chrl
chrl

chrl
chrl

GeneSetCollection

set2

Running GLOSSI

12692907 12692907

223543792 223543792
223544114 223544114
223544169 223544169
223544430 223544430
223551121 223551121

(2 total)

unique identifiers: rs3789052,

types in collection:
geneldType: AnnotationIdentifier (1 total)
collectionType: NullCollection (1 total)

rs3789051,

7

seqinfo: 27 sequences from an unspecified genome; no seqlengths

rs3766392 (1478 total)

An assumption of GLOSSI [1] is that our SNPs (and thus p-values) are inde-
pendent. In order to run glossi, we must subset our arrayDataGR p-values to
those from independent SNPs.

In the geneSetAnalysis list, we have included a vector of independent SNPs
from our GWAS experiment. This list was created using a standard ‘LD-pruning’
method from the PLINK software [3].

> indep <- geneSetAnalysis[["indepSNPs"]]

> head(indep)

V1
1 rs2649588
2 rs3107157
3 rsl456465
4 rs7528494
5 rs12046130
6 rs11590026

> dim(indep)

| 111302 1

Combining SNP P-Values in Gene Sets: the cpvSNP Package

We now subset arrayDataGR to contain only independent SNPs, and create a
new vector of p-values with names corresponding to these independent SNPs.

> pvals <- arrayDataGR$P[is.element(arrayDataGR$SNP, indep$Vl)]
> names(pvals) <- arrayDataGR$SNP[is.element(arrayDataGR$SNP, indep$V1)]
> head(pvals)

rs2172285 rs2430130 rs1572750
0.7191158 0.3508501 0.8763177

We now have the proper input to call glossi. We can consider all gene sets
in our GeneSetCollection, or call glossi on a just some of the sets. Accessor
functions for the resulting GLOSSIResultCollection allow us to view the results.

> gRes <- glossi(pvals, snpsGSC)
> gRes

An object of class "GLOSSIResultCollection"
[[1]]

GLOSSI results for setl

p-value = 0.876

observed statistic 0.132

degrees of freedom =1

[[2]]
GLOSSI results for set2
p-value = 0.6

observed statistic
degrees of freedom

1.38
2

> gRes2 <- glossi(pvals, snpsGSC[[1]])
> gRes2

GLOSSI results for setl
p-value = 0.876

observed statistic
degrees of freedom

0.132
1

> pValue(gRes)
$setl
[1] 0.8763177

$set?
[1] 0.5997541

> degreesOfFreedom(gRes)

Combining SNP P-Values in Gene Sets: the cpvSNP Package

$setl
[1] 1

$set2
[1] 2
> statistic(gRes)
$setl

[1] 0.1320265

$set?2
[1] 1.377129

Using the ReportingTools package, we can publish these results to a HTML
page for exploration. We first adjust for multiple testing.

> pvals <- p.adjust(unlist(pValue(gRes)), method= "BH")

> library(ReportingTools)

> report <- HTMLReport (shortName = "cpvSNP_glossiResult",

+ title = "GLOSSI Results", reportDirectory = "./reports")
> publish(geneSets, report, annotation.db = "org.Hs.eg",

+ setStats = unlist(statistic (gRes)),

+ setPValues = pvals)

> finish(report)

2.3 Running VEGAS

Unlike GLOSSI, which requires SNPs and p-values to be independent, VEGAS
[2] accounts for correlation among SNPs and corresponding p-values. We thus
need a matrix of correlation values for each SNP in our GWAS. Most com-
monly, this correlation matrix holds linkage disequilibrium (LD) values. Many
R packages and online tools exist to calculate an LD matrix for observed raw
data.

Here, we briefly show how to calculate an LD matrix for chromosome 1 using
the publicly available HapMap data, the R package snpStats, and the PLINK
software package [3]. This requires downloading PLINK file formatted data,
extracting the probes on chromosome 1, and then calculating LD among SNPs
in the snpsGSC elements.

> download. file(
+ url="http://hapmap.ncbi.nlm.nih.gov/genotypes/hapmap3_r3/plink_format/hapmap3_r3_b:
+ destfile="hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz")

Combining SNP P-Values in Gene Sets: the cpvSNP Package

> download.file(

+ url="http://hapmap.ncbi.nlm.nih.gov/genotypes/hapmap3_r3/plink_format/hapmap3_r3_b:
+ destfile="hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz")

> system("gunzip hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz")

> system("gunzip hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz")

> system("plink --file hapmap3_r3_b36_fwd.consensus.qc.poly --make-bed --chr 1")
> genos <- read.plink(bed, bim, fam)

> genos$genotypes

> head(genos$map)

> X <- genos[,is.element(genosmapsnp.name,c(genelds(snpsGSC[[2]]1)))]

> ldMat <- ld(x,y=x,stats="R.squared")

We have performed these steps already, and can simply use the LD matrix
included in our geneSetAnalysis list, 1dMat to call vegas. Note that the
vegas method calculates simulated statistics (see Methods section below for
more details).

ldMat <- geneSetAnalysis[["ldMat"]]

vRes <- vegas(snpsGSC[1l], arrayDataGR, ldMat)
vRes

summary(unlist(simulatedStats(vRes)))
pValue(vRes)

degreesOfFreedom(vRes)

statistic(vRes)

vV V. .V V V VvV V

2.4 Visualizing Results

There are two plotting functions available in cpvSNP to visualize the results from
the GLOSSI and VEGAS methods.

The plotPvals function plots the calculated p-values against the number of
SNPs in each gene set, for each set in the original GeneSetCollectionand
GLOSSIResultCollection. In this vignette we have only analyzed two gene sets,
so this plot is not very informative. The plot is included simply to demonstrate
the plotting functions available in the cpvSNP package.

> plotPvals(gRes, main="GLOSSI P-values")

The assocPvalBySetPlot function plots the GWAS p-values for each SNP in
the original association study, as well as those for SNPs in a particular gene set.
This visualization enables an easy comparison of the p-values within a particular
gene set to all p-values from our GWAS. Gene sets that are highly associated
with the phenotype of interest will have a different distribution than all SNPs
in our study.

Combining SNP P-Values in Gene Sets: the cpvSNP Package

0.8-

PValue

0.7-

06- .

1.00 125 150 1.75
SNPs per Gene Set

2.00

Figure 1: The number of SNPs per gene set versus the p-value, for the GLOSSI
methods

> pvals <- arrayDataGR$P
> names(pvals) <- arrayDataGR$SNP
> assocPvalBySetPlot(pvals, snpsGSC[[2]])

Combining SNP P-Values in Gene Sets: the cpvSNP Package

v | all assoc results
b .
—— Set of interest
o |
- -—
=
(73]
[
[0}
()]
|
o
8 De——

—logqg p —Vvalue

Figure 2: Density plots of all p-values, overlaid in red with p-values from the
second gene set

Methods in brief

3.1

GLOSSI methods

The GLOSSI [1] method assumes that our p-values are independently dis-
tributed. Define J to be the total number of independent SNPs for which
we have association p-values, such that each locus j has a corresponding p-
value, p;, j € {1,...,J}. For this vignette, J = 302. Let K be the total
number of loci sets in which we are interested. For the example used in this
vignette, K = 2.

We begin by defining an indicator variable g for each loci set k£ and for each

locus j, such that

1, if 5" locus is in k' set
ik = .
9i 0, otherwise

10

Combining SNP P-Values in Gene Sets: the cpvSNP Package

3.2

Note the sum of g is the size of loci-set k
J
nE = Zgjk
j=1
Our statistic for each loci-set k is defined as

J
Sk = =2 _ girlog(p;)
j=1

We know from Fisher’s transformation that if the p, “ Unif(0,1) then Skops ™
Xgnk. Thus, to calculate the corresponding p-value for loci-set k, we simply use
the corresponding x? distribution for each set. Note the degrees of freedom in
the null distribution takes into account the size of the loci-set, ny.

VEGAS methods

The VEGAS [2] method does not require independent SNPs, but rather a matrix
of correlation values among the SNPs being considered. These correlation values
can be correlation coefficients, a composite LD measure, or similar. We denote
the correlation matrix for a particular loci-set k& as >, where each row and
column corresponds to a SNP in k. This matrix must be square, symmetric,
and have values of 1 on the diagonal.

To calculate a p-value for loci-set k that takes into account the correlation
structure, we begin by simulating a vector z ~ N(0,1) with length n;. We
take the Cholesky decomposition of ¥, and multiply this by z to define a
Multivariate Normal random variable 2’ ~ MV N(0,%;). To define a statistic
from this null distribution that now has the same correlation structure as our
observed data, we calculate

Nk

Sk =Y _[zichol ()]

i=1

We simulate the vector z a total of ng,,s times. We calculate the observed

p-value as

(nsims + 1)

11

Combining SNP P-Values in Gene Sets: the cpvSNP Package

4 Session Info

R version 3.5.1 Patched (2018-07-24 r75008), x86_64-w64-mingw32

Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

Running under: Windows Server 2012 R2 x64 (build 9600)
Matrix products: default

Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, stats4, utils

Other packages: AnnotationDbi 1.44.0, Biobase 2.42.0,
BiocGenerics 0.28.0, GSEABase 1.44.0, GenomelnfoDb 1.18.0,
GenomicFeatures 1.34.0, GenomicRanges 1.34.0, IRanges 2.16.0,
S4Vectors 0.20.0, TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2,
XML 3.98-1.16, annotate 1.60.0, cpvSNP 1.14.0, graph 1.60.0

Loaded via a namespace (and not attached): BiocManager 1.30.3,
BiocParallel 1.16.0, BiocStyle 2.10.0, Biostrings 2.50.0, DBI 1.0.0,
DelayedArray 0.8.0, GenomelnfoDbData 1.2.0,

GenomicAlignments 1.18.0, Matrix 1.2-14, R6 2.3.0, RCurl 1.95-4.11,
RSQLite 2.1.1, Rcpp 0.12.19, Rsamtools 1.34.0,
SummarizedExperiment 1.12.0, XVector 0.22.0, assertthat 0.2.0,
backports 1.1.2, bindr 0.1.1, bindrcpp 0.2.2, biomaRt 2.38.0, bit 1.1-14,
bit64 0.9-7, bitops 1.0-6, blob 1.1.1, colorspace 1.3-2, compiler 3.5.1,
corpcor 1.6.9, crayon 1.3.4, digest 0.6.18, dplyr 0.7.7, evaluate 0.12,
ggplot2 3.1.0, glue 1.3.0, grid 3.5.1, gtable 0.2.0, hms 0.4.2,

htmltools 0.3.6, httr 1.3.1, knitr 1.20, labeling 0.3, lattice 0.20-35,
lazyeval 0.2.1, magrittr 1.5, matrixStats 0.54.0, memoise 1.1.0,

munsell 0.5.0, pillar 1.3.0, pkgconfig 2.0.2, plyr 1.8.4, prettyunits 1.0.2,
progress 1.2.0, purrr 0.2.5, rlang 0.3.0.1, rmarkdown 1.10,

rprojroot 1.3-2, rtracklayer 1.42.0, scales 1.0.0, snow 0.4-3, stringi 1.2.4,
stringr 1.3.1, tibble 1.4.2, tidyselect 0.2.5, tools 3.5.1, xtable 1.8-3,
yaml 2.2.0, zlibbioc 1.28.0

12

Combining SNP P-Values in Gene Sets: the cpvSNP Package

5

References

1. Chai, High-Seng and Sicotte, Hughes et al. GLOSSI: a method to assess
the association of genetic loci-sets with complex diseases. BMC Bioinformatics,
2009.

2. Liu, Jimmy Z. and Mcrae, Allan F. et al. A Versatile Gene-Based Test for
Genome-Wide Association Studies. The American Journal of Human Genetics,
2010.

3. Purcell S., Neale B., and Sham P.C. et al. PLINK: a toolset for whole-
genome association and population-based linkage analysis. American Journal
of Human Genetics, 2007.

13

	1 Introduction
	2 Example workflow for cpvSNP
	2.1 Preparing a dataset for analysis
	2.2 Running GLOSSI
	2.3 Running VEGAS
	2.4 Visualizing Results

	3 Methods in brief
	3.1 GLOSSI methods
	3.2 VEGAS methods

	4 Session Info
	5 References

